QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells.
نویسندگان
چکیده
Quantitative structure-property/activity relationships (QSPRs/QSARs) are a tool to predict various endpoints for various substances. The "classic" QSPR/QSAR analysis is based on the representation of the molecular structure by the molecular graph. However, simplified molecular input-line entry system (SMILES) gradually becomes most popular representation of the molecular structure in the databases available on the Internet. Under such circumstances, the development of molecular descriptors calculated directly from SMILES becomes attractive alternative to "classic" descriptors. The CORAL software (http://www.insilico.eu/coral) is provider of SMILES-based optimal molecular descriptors which are aimed to correlate with various endpoints. We analyzed data set on nanoparticles uptake in PaCa2 pancreatic cancer cells. The data set includes 109 nanoparticles with the same core but different surface modifiers (small organic molecules). The concept of a QSAR as a random event is suggested in opposition to "classic" QSARs which are based on the only one distribution of available data into the training and the validation sets. In other words, five random splits into the "visible" training set and the "invisible" validation set were examined. The SMILES-based optimal descriptors (obtained by the Monte Carlo technique) for these splits are calculated with the CORAL software. The statistical quality of all these models is good.
منابع مشابه
Rapid Delivery of Gold Nanoparticles into Colon Cancer HT-29 Cells by Electroporation: In-vitro Study
Background: Electroporation has become a routine technique for rapid drug delivery for the treatment of cancer. Because of its simplicity and wide range of application, it has been applied for the transfer of gold-nanoparticles and can facilitate entry into target cancer cells. Objective: The aim of this study is finding optimal conditions in order to obtain high GNPs- uptake and cell via...
متن کاملGold nanoparticles as a radio-sensitizer of colon cancer cells at high megavoltage energies: An In-Vitro study
Introduction: In the point of physical view, there are no significant differences between tumor and normal tissues during radiation therapy. Radio-sensitizers have a key role to address the issue. Exploiting high atomic number, gold nanoparticles (GNPs) have been introduced as novel radio-sensitizers and have shown promising result in the field. Owing to high mass attenuation c...
متن کاملRadiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles
Introduction: A main choice for cancer treatment is radiotherapy. But, the radiotherapy disadvantage is damages caused by radiation given to normal tissues/organs surrounding cancer. One way to avoid this is via increasing radiosensitization of cancer cells. Gold nanoparticles (GNPs) have shown sensitizing effect on cancer cells by enhancing their absorbed dose. Unlike earlier ...
متن کاملIn-Vitro Assessment of Magnetic Dextran-Spermine Nanoparticles for Capecitabine Delivery to Cancerous Cells
Cationic polymeric nanoparticles have great potential for developing drug delivery systemswith limited side effects for tumor medication. The goal of this research is investigation ofcationic dextran-spermine polymer (DS) efficacy for improvement of hydrophilic drug deliveryto negatively charged cancerous cells. Capecitabine (as a hydrophilic antineoplastic drug) wasloaded into the magnetic dex...
متن کاملZnO nanofluids for the improved cytotoxicity and cellular uptake of doxorubicin
Objective(s): Combination anticancer therapy holds promise for improving the therapeutic efficacy of chemotherapy drugs such as doxorubicin (DOX) as well as decreasing their dose-limiting side effects. Overcoming the side effects of doxorubicin (DOX) is a major challenge to the effective treatment of cancer. Zinc oxide nanoparticles (ZnO NPs) are emerging as potent tools for a wide variety of b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 92 1 شماره
صفحات -
تاریخ انتشار 2013